Logically Rectangular Grids and Finite Volume Methods for PDEs in Circular and Spherical Domains

نویسندگان

  • Donna A. Calhoun
  • Christiane Helzel
  • Randall J. LeVeque
چکیده

We describe a class of logically rectangular quadrilateral and hexahedral grids for solving PDEs in circular and spherical domains, including grid mappings for the circle, the surface of the sphere, and the three-dimensional ball. The grids are logically rectangular and the computational domain is a single Cartesian grid. Compared to alternative approaches based on a multiblock data structure or unstructured triangulations, this approach simplifies the implementation of numerical methods and the use of adaptive refinement. A more general domain with a smooth boundary can be gridded by composing one of the mappings from this paper with another smooth mapping from the circle or sphere to the desired domain. Although these grids are highly nonorthogonal, we show that the highresolution wave-propagation algorithm implemented in clawpack can be used effectively to approximate hyperbolic problems on these grids. Since the ratio between the largest and smallest grids is below 2 for most of our grid mappings, explicit finite volume methods such as the wave-propagation algorithm do not suffer from the center or pole singularities that arise with polar or latitude-longitude grids. Numerical test calculations illustrate the potential use of these grids for a variety of applications including Euler equations, shallow water equations, and acoustics in a heterogeneous medium. Pattern formation from a reaction-diffusion equation on the sphere is also considered. All examples are implemented in the clawpack software package and full source code is available on the web, along with MATLAB routines for the various mappings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Logically rectangular finite volume methods with adaptive refinement on the sphere.

The logically rectangular finite volume grids for two-dimensional partial differential equations on a sphere and for three-dimensional problems in a spherical shell introduced recently have nearly uniform cell size, avoiding severe Courant number restrictions. We present recent results with adaptive mesh refinement using the GeoClaw software and demonstrate well-balanced methods that exactly ma...

متن کامل

High-Order Finite-Volume Methods on Locally-Structured Grids

For many problems in astrophysics and space sciences, it is desirable to compute solutions in a way that preserves spherical symmetry, so that the dynamics of small perturbations about the spherically symmetric case are not overwhelmed by numerical error. Traditionally, such calculations have been done by discretizing the equations expressed in spherical coordinates. This approach has significa...

متن کامل

Cooling Performance Analysis of Water-Cooled Heat Sinks with Circular and Rectangular Minichannels Using Finite Volume Method

In this paper, the cooling performance of water-cooled heat sinks for heat dissipation from electronic components is investigated numerically. Computational Fluid Dynamics (CFD) simulations are carried out to study the rectangular and circular cross-sectional shaped heat sinks. The sectional geometry of channels affects the flow and heat transfer characteristics of minichannel heat sinks. T...

متن کامل

A Mass Conservative Method for Numerical Modeling of Axisymmetric flow

In this paper, the cell-centered finite volume method (CC-FVM) has been presented to simulate the axisymmetric radial flow toward a pumping well. The model is applied to the unstructured triangular grids which allows to simulate inhomogeneous and complex-shaped domains. Due to the non-orthogonality of the irregular grids, the multipoint flux approximation (MPFA) methods are used to discretize t...

متن کامل

A Finite Volume Method for Solving Parabolic Equations on Logically Cartesian Curved Surface Meshes

We present a second order, finite volume scheme for the constant-coefficient diffusion equation on curved, parametric surfaces. While our scheme is applicable to general quadrilateral surface meshes based on smooth or piecewise smooth coordinate transformations, our primary motivation for developing the present scheme is to solve diffusion problems on a particular set of circular and spherical ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM Review

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2008